- 34. The device of claim 0, wherein at least the surface of the substrate and the magnetic regions comprises a biocompatible material.
- **35**. The device of claim 32, wherein the magnetic regions are surrounded by nonmagnetic material.
- **36**. The device of claim 32, wherein the substrate comprises silicon.
- 37. The device of claim 0, wherein the magnetic regions comprise cobalt.
- $3\overline{8}$. The device of claim 0, wherein the magnetic regions are formed using photolithography.
- **39**. The device of claim **0**, wherein the magnetic particles are magnetic beads.
- **40**. The device of claim **0**, wherein the magnetic particles are paramagnetic particles.
- **41**. The device of claim **0**, wherein the magnetic particles are superparamagnetic particles.
- **42**. The device of claim $\mathbf{0}$, further comprising a flux circulator.
- **43**. The device of claim **0**, further comprising a plurality of photodetectors.
- **44**. The device of claim **0**, further comprising a microfluidic assembly.
- **45**. The device of claim **0**, further comprising a plurality of magnetic particles.
- **46**. The device of claim 45, wherein the magnetic particles are substantially uniform in size and shape and are magnetic heads.
- 47. The device of claim 45, wherein the magnetic particles are substantially uniform in size and shape and are paramagnetic beads.
- **48**. The device of claim 45, wherein the magnetic particles are substantially uniform in size and shape and are superparamagnetic beads.
- **49**. The device of claim 45, wherein the magnetic particles are trapped by the localized magnetic fields.
- **50**. The device of claim 45, wherein each of a plurality of the magnetic particles comprises a detectable moiety.
- **51**. The device of claim 50, wherein the detectable moiety comprises a fluorescent or luminescent molecule.
- **52**. The device of claim 50, wherein the detectable moiety comprises a nucleic acid.
- 53. The device of claim 52, wherein the nucleic acid comprises a hybridization tag.
- **54.** The device of claim 45, wherein each of a plurality of the magnetic particles has a probe attached thereto.
- **55**. The device of claim 54, wherein the probe comprises a binding ligand.
- **56**. The device of claim 54, wherein the probe comprises a nucleic acid molecule.
- **57**. The device of claim 54, wherein the probe comprises a protein.
- **58.** The device of claim **0**, further comprising a magnet for magnetizing and demagnetizing the magnetic regions.
- **59**. A device for forming an array of magnetic particles, the device comprising:
 - a substrate comprising a plurality of magnetic regions, wherein the localized magnetic regions produce a plurality of localized magnetic fields, and wherein the magnetic regions project above the surface of the substrate.
- **60**. The device of claim **0**, further comprising a plurality of magnetic particles.

- 61. The device of claim 0, wherein the magnetic regions are substantially uniform in size and shape.
- **62**. The device of claim $\mathbf{0}$, wherein the magnetic regions are arranged in a pattern of mutually perpendicular rows and columns.
- **63**. A device for forming an array of magnetic particles, the device comprising:
 - a nonmagnetic substrate; and
 - a plurality of magnetic regions located on the substrate, wherein a localized magnetic field exists between adjacent magnetic material regions when magnetized.
- **64**. The device of claim **0**, further comprising a plurality of magnetic particles.
- 65. The device of claim 0, wherein the magnetic regions are substantially uniform in size and shape.
- **66.** The device of claim $\mathbf{0}$, wherein the magnetic regions are arranged in a pattern of mutually perpendicular rows and columns.
- 67. The device of claim 0, wherein the magnetic regions project above the surface of the substrate.
- **68.** A device for forming an array of magnetic particles, the device comprising:
 - a substrate comprising a plurality of magnetic regions, wherein the magnetic regions produce a plurality of localized magnetic fields when magnetized, and wherein the localized magnetic fields generate forces sufficient to trap a magnetic particle with a trapping energy at least five times greater than the thermal energy of the particle at room temperature.
 - 69. A randomly ordered array of magnetic particles.
- **70**. The array of claim **0**, wherein the magnetic particles are trapped by localized magnetic fields.
- 71. The array of claim 0 or claim 70, wherein the magnetic particles are beads.
- 72. The array of claim 71, wherein each of a plurality of the magnetic particles comprises a probe.
 - 73. The array of claim 71, wherein the beads are encoded.
- **74.** A method of forming an array of magnetic particles comprising:
 - contacting the device of any of claims **0**, **0**, or **0** with a plurality of magnetic particles.
- 75. The method of claim 0, wherein the plurality of magnetic particles comprises at least two populations of magnetic particles, wherein the populations are distinguishable.
- 76. The method of claim 0, wherein the step of contacting comprises dispensing the magnetic particles in a fluid medium.
- 77. The method of claim 0, further comprising the steps of:
 - removing a majority of the magnetic particles from the device; and
 - reusing the device in a subsequent analytical process.
 - 78. An array formed according to the method of claim 0.
- **79**. A method of forming an array of magnetic particles comprising steps of:
 - contacting magnetic particles with a device comprising magnetic regions that produce localized magnetic fields, whereby a plurality of the magnetic particles are trapped by the localized magnetic fields.